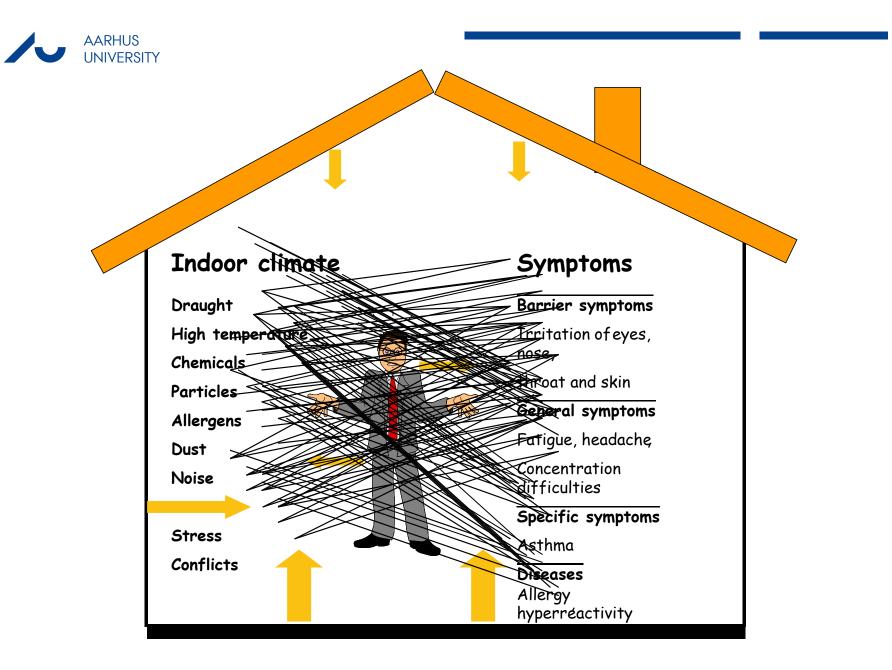


INDOOR AIR AND HEALTH

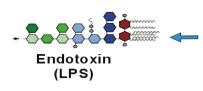
Grethe Elholm Public Health, Aarhus University

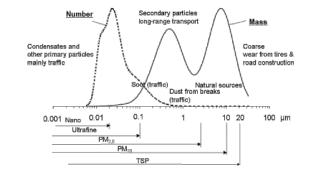


PROLOGUE

It is a challenge to evaluate indoor air exposure !

Fra Kjell Andersson, Örebro


Important airborne exposures

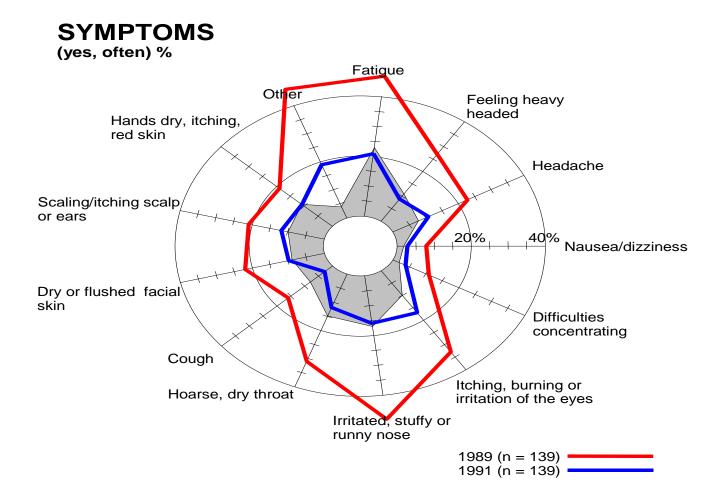




Health effects

- Annoyance
- Irritation, general symptoms
- Infectious disease
- Allergy, allergic disease
 - Asthma
 - Nasal problems (hay fever)
- Heart disease
- Chronic obstructive lung disease - COPD
- Cancer

Increasing severity



INDOOR SYNDROME (WHO 1986)

- Sensoric irritation in eyes, nose, throat (pain, feeling of dryness, horseness, irritation, problems with the voice)
- Neurological or uncharacteristic symptoms (head egg, sleepeness, decreased concentration, nausea, vomiting)
- Skin irritation (pain, redness, itching, dry skin)
- Unspecific hypersensitivity reactions (Runny nose and eyes, asthma-like symptoms
- Smell and taste symptoms (Changed smell and taste sensation)

Annoyance, irritation, general symptoms

From Kjell Andersson, Arbejds- og miljømedicinsk klinik, Örebro Universitets Sygehus

INFECTIONS

- A common cold far most frequent
 Spread of infectious disease
 - > A common cold
 - > Flu
 - > Meningitis
 - > Legionellae

 Most important determinants: Person density, ventilation, hygiejne

WHAT IS ALLERGY?

- Undesirably reactions from the immune system
- Is (partly) the cause of a range of disease, for example:
 - •Asthma
 - •Rhinitis (hay fever)
 - Atopic eczema
- These diseases are called allergic disease, although they are not always caused by allergic mechanisms!

Exposure to multiple indoor allergens in US homes and its relationship to asthma

Päivi M. Salo, PhD,^a Samuel J. Arbes, Jr, DDS, MPH, PhD,^b Patrick W. Crockett, PhD,^c Peter S. Thorne, PhD,^d Richard D. Cohn, PhD,^c and Darryl C. Zeldin, MD^a Research Triangle Park, Chapel Hill, and Durham, NC, and Iowa City, Iowa



FIG 1. Overall burden of multiple allergens in US homes. The bar graph shows percentages (\pm SEs) of homes with detectable (A) and increased (B) levels of allergens by numbers of allergens exceeding allergen-specific thresholds.

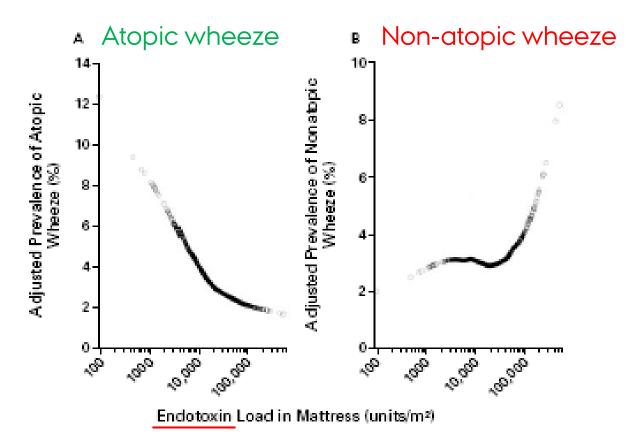
TABLE IV. Current asthma in relation to high allergen burden (≥4 allergens exceeding increased levels in the home) stratified by atopic status

Logistic models	Current asthma, OR (95% CI)	P value for interaction	
Unadjusted model			
All subjects	1.57 (0.99-2.50)		
Diagnosed allergies*		.03	
No	0.65 (0.25-1.69)		
Yes	2.18 (1.28-3.69)		
Adjusted model†			
All subjects	1.39 (0.91-2.14)		
Diagnosed allergies*		.07	
No	0.62 (0.24-1.60)		
Yes	1.81 (1.04-3.15)		

*Atopy assessed by reported doctor-diagnosed allergies.

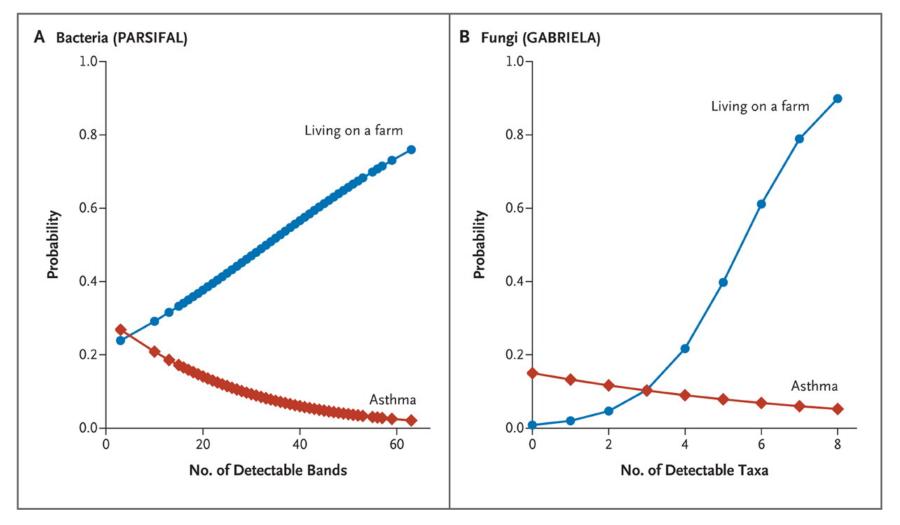
 $^{+}$ Adjusted for age, sex, race, education, smoking, season, and endotoxin levels (current asthma/no current asthma [n/N] = 165/1788).

J Allergy Clin Immunol 2008

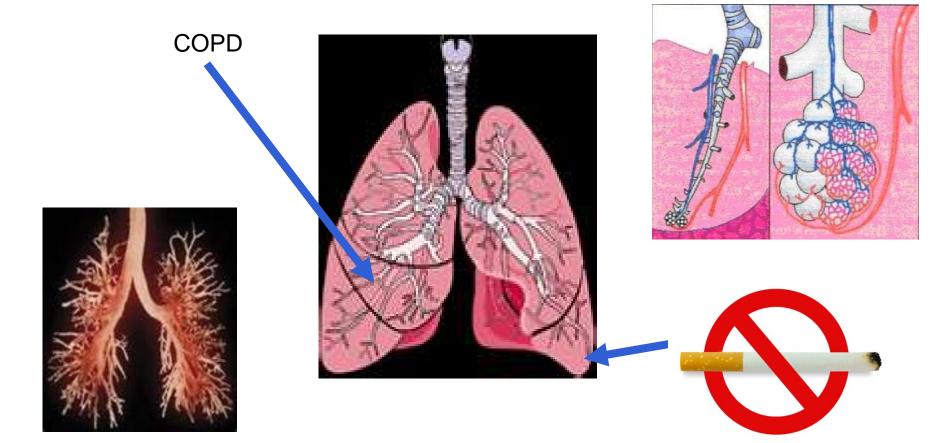

The New England Journal of Medicine

Copyright @ 2002 by the Massachusetts Medical Society

VOLUME 347


ENVIRONMENTAL EXPOSURE TO ENDOTOXIN AND ITS RELATION TO ASTHMA IN SCHOOL-AGE CHILDREN

NUMBER 12

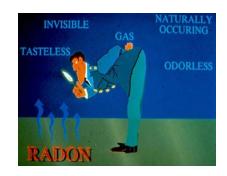

Microorganism diversity and childhood asthma

Ege et al NEJM 2011

COPD

Forest plot of biofuel compared to other types of fuel, airways disease among women and children

Study ID	ES (95% CI)	% Weigh
ARI in children		
Behera et al. 1998 (India)	2.98 (0.74, 11.99)	8.34
Collings et al. 1990 (Zimbabwe)	2.16 (1.44, 3.26)	14.09
(ilabuko et al. 2007 (Tanzania)	7.98 (4.63, 13.78)	13.41
Vishra et al. 1997 (India)	1.32 (0.92, 1.92)	14.27
Mishra 2003 (Zimbabwe)	2.20 (1.16, 4.19)	12.86
Mishra et al. 2005 (India)	→ 1.58 (1.28, 1.95)	14.81
Morris et al. 1990 (United States)	4.85 (1.69, 12.91)	10.53
Savitha et al. 2007 (India)	32.63 (13.61, 72.25	
Subtotal (I-squared = 91.3% , p = 0.000)	3.53 (1.93, 6.43)	100.00
Asthma in children		
Behera et al. 1998 (India)	0.16 (0.01, 3.24)	12.72
Noorhassim et al. 1995 (Malaysia)	• 0.62 (0.30, 1.28)	29.17
Melsom et al. 2001 (Nepal)	2.20 (1.00, 4.50)	28.98
Fagbule et al. 1994 (Nigeria)	0.15 (0.07, 0.30)	29.13
Subtotal (I-squared = 88.6%, p = 0.000)	0.50 (0.12, 1.98)	100.00
Subtotal (1-squared = 66.6%, $p = 0.000$)	0.50 (0.12, 1.98)	100.00
Asthma in women Behera et al. 2001 (India)	1 50 (0 60 0 74)	12.04
	1.52 (0.62, 3.74)	
Bolshan et al. 2002 (Iran)	► 1.08 (1.01, 1.27)	45.01
Mishra 2003 (India)	1.83 (1.32, 2.53)	34.17
Dureshi 1994 (India)	• 0.79 (0.17, 3.58)	5.09
Jzun et al. 2003 (Turkey)	1.47 (0.24, 8.99)	3.68
Subtotal (I-squared = 58.6%, p = 0.046)	1.34 (0.93, 1.93)	100.00
CB in women		
Akhtar et al. 2007 (Pakistan)	2.51 (1.65, 3.83)	21.17
Ehrlich et al. 2004 (South Africa)	1.50 (1.00, 2.10)	23.47
Golshan et al. 2002 (Iran)	2.91 (2.08, 4.40)	23.30
(iraz et al. 2003 (Turkey)	3.18 (1.39, 7.32)	9.33
Aalik 1985 (India)	3.28 (1.39, 7.76)	8.85
Jzun et al. 2003 (Turkey)	3.45 (1.85, 6.45)	13.89
Subtotal (I-squared = 47.3%, p = 0.091)	 2.52 (1.88, 3.38) 	100.00
COPD in women	_	
Dennis et al. 1996 (Colombia)	3.92 (1.70, 9.10)	16.12
Ekici et al. 2005 (Turkey)	➡ 1.40 (1.20, 1.70)	29.15
Kiraz et al. 2003 (Turkey)	11.12 (1.48, 83.34)	4.99
iu et al. 2007 (China)	3.11 (1.63, 5.94)	19.89
Sezer et al. 2006 (Turkey)	1.66 (0.89, 3.10)	20.37
Shrestha et al. 2005 (Nepal)	3.13 (0.83, 11.76)	9.48
Subtotal (I-squared = 67.2%, p = 0.009)	2.40 (1.47, 3.93)	100.00
NOTE: Weights are from random effects analysis		

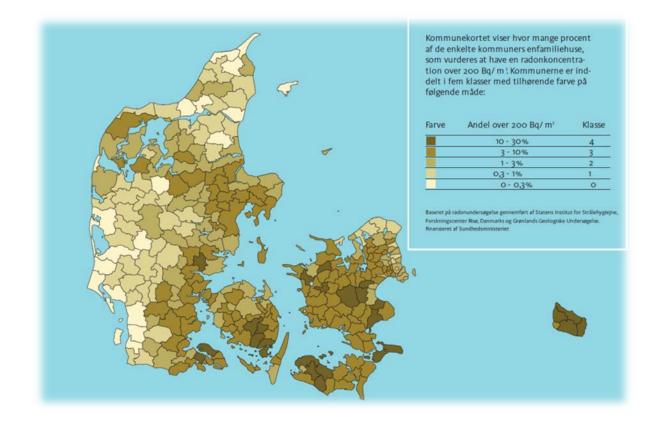

June Y T Po et al. Thorax 2011;66:232-239

Cancer

- ETS
- Radon
- Asbestos

Lung Cancer and cardiac disease

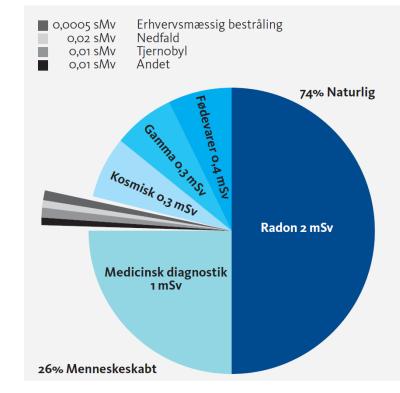
 Table 2
 PAF and number of deaths attributable to passive smoking among never smoking women, Spain 2002


	Lung cancer (min-max)		Ischaemic heart disease (min-max)		Total (min-max)
	PAF	Deaths	PAF	Deaths	Deaths
Overall ETS exposure					
35–64 years	-	12-31	-	41-84	53-115
≥65 years	-	37-70	-	730-1349	767-1419
Total	-	49-101	-	771-1433	820-1534
ETS exposure only at home					
35–64 years	0.050-0.073	8-12	0.062-0.090	32-46	40-58
≥65 years	0.160-0.308	37-70	0.046-0.085	730 1349	767–1419
Total	-	45–82	-	762–1395	807–1477
ETS exposure only at work					
35–64 years	0.021-0.070	3-12	0.011-0.039	6–20	9–32
≥65 years	-		-	-	-
Total	-	3-12	-	6–20	9–32
TS exposure at home and at work					
35–64 years	0.008-0.045	1–7	0.011-0.058	3–18	4-25
≥65 years	-	-	-	-	-
Total	-	1–7	-	3-18	4-25

PAF, population attributable fraction; ETS, environmental tobacco smoke.

López MJ et al Tob Control. 2007

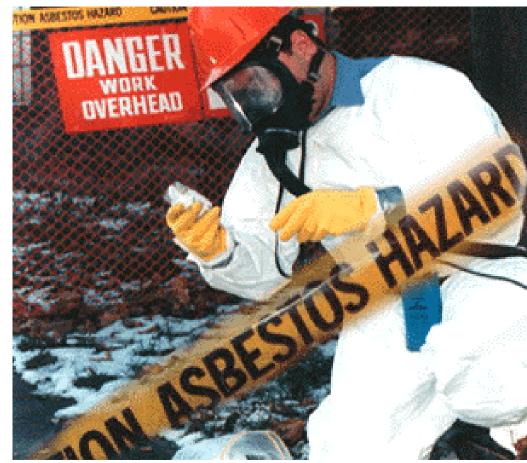
RADON


4.6% of homes > 200Bq/m³ i år 2000

RADIATION EXPOSURE AMONG THE DANISH POPULATION

Total 4 mSv pr year:

- > Medical radiation ~ 1 mSv
- > Background radiation ~ 1 mSv
- > Radon and radon daughters indoor ~ 2 mSv



ASBESTOS EXPOSURE

Prioritering i praksis

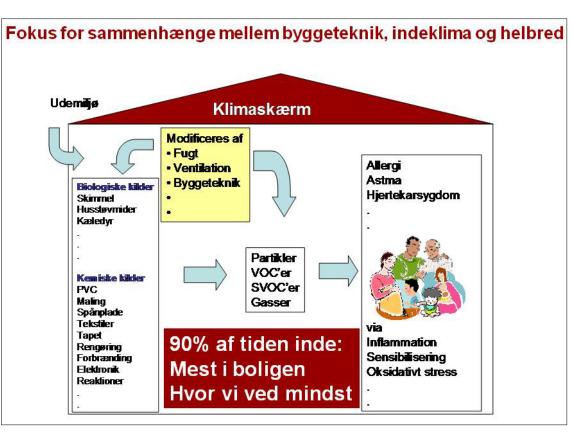
- samfundets overordnede prioritering

- <u>Mål</u>: Minimering af den samlede optagelse af PCB i populationen
- Bygninger med langvarige ophold, specielt hvis den bruges af primære målgrupper for indsatsen.
- Håndtering af PCB-holdigt bygningsaffald så det ikke ender i fødekæden og dermed i fødevarer
 - også en central sundhedsmæssig prioritet.

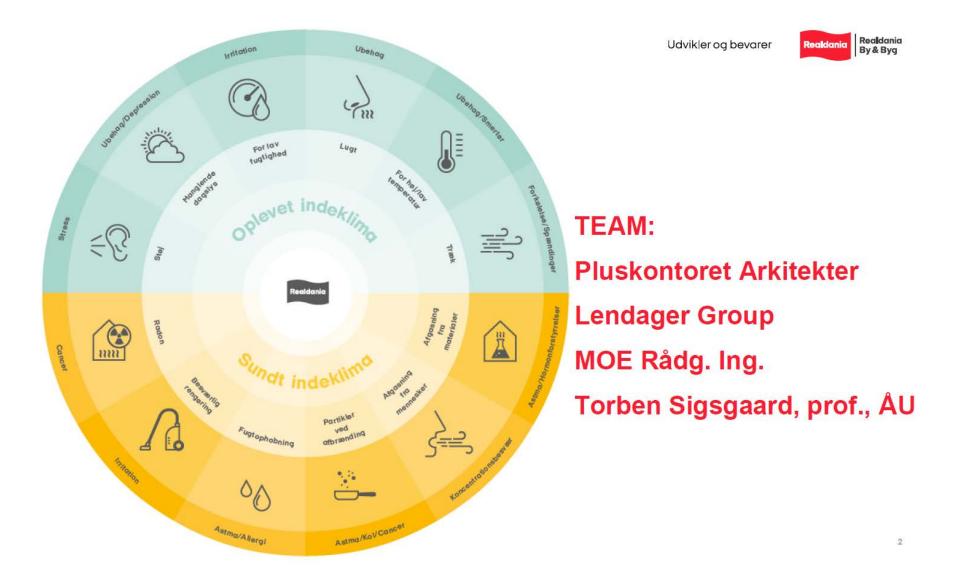
Håndtering i praksis "Aktionsværdier" – handle-værdier

Forureningsniveau	Anbefaling
Over 3.000 ng PCB/m ³	Det anbefales, at der gribes ind med kildefjernelse og/eller forsegling uden unødig forsinkelse, også i bygninger, som kun anvendes dele af døgnet. Midlertidige afværgeforanstaltninger bør umiddelbart iværksættes.
300 – 3.000 ng PCB/m ³	Det må antages, at ophold i længere tid kan medvirke til sundhedsskader. Det anbefales, at der umiddelbart iværksættes midlertidige afværgeforanstaltninger og der må laves planer for mere vedvarende løsninger.
Under 300 ng PCB/m ³	Der er PCB i bygningen, men udsættelsen vurderes ikke at medføre en betydende forøget helbredsrisiko.

Opholdstid indgår ikke i aktionsniveauerne


SUMMARY

- Many well documented exposures
- Mostly annoyance disease not common
- Many well documented and possible disease caused by or exacerbated by indoor air exposures
- Still more knowledge is needed:
 - Better exposure assessment
 - More knowledge about dose response associations
 - More knowledge about simultaneous exposures
 - More knowledge about susceptible groups
 - More knowledge about mechanisms
 - More intervention research


Center for Indeklima og Sundhed i Boliger

- > Centre for Indoor air and health in dwellings (2009-2016)
- > Research director: Torben Sigsgaard, Institut for Folkesundhed, AU
- Other institutions: Statens Byggeforskningsinstitut, Institut for Folkesundhedsvidenskab KU, Det Nationale Center for Arbejdsmiljø

TAK FOR OPMÆRKSOMHEDEN